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Algorithms & Data Structures Exercise sheet 12 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 19 December 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 12.1 MST practice.

Consider the following graph
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a) Compute the minimum spanning tree (MST) using Boruvka’s algorithm. For each step, provide the
set of edges that are added to the MST.

Solution:

At the �rst step we add edges {a, c}, {b, e}, {c,d}, {d, f}. At the second step we add {e, f}.

b) Provide the order in which Kruskal’s algorithm adds the edges to the MST.

Solution:

{c,d}, {d, f}, {b, e}, {e, f}, {a, c}.

c) Provide the order in which Prim’s algorithm (starting at vertex d) adds the edges to the MST.

Solution:

{c,d}, {d, f}, {e, f}, {b, e}, {a, c}.



Exercise 12.2 Maximum Spanning Trees and Trucking (2 points).

We start with a few questions about maximum spanning trees.

(a) How would you �nd the maximum spanning tree in a weighted graph G? Brie�y explain an
algorithm with runtime O((|V |+ |E|) log |V |).

Solution:

We simply take any MST algorithm (e.g., Boruvka, Prim, or Kruskal) and replace all the mins with
maxs. Speci�cally: in Boruvka, we will �nd the maximum-weight outgoing edge from each con-
nected component (“ZHK” from the lecture); in Prim, we will extract-max (instead of extract-min),
use max to update weights, and use increase-key; in Kruskal, we will sort in decreasing order. �e
correctness arguments do not change (except for replacing “minimum” with “maximum”); the same
O((|V |+ |E|) log |V |) bound holds for runtime.

(b) Given a weighted graph G = (V,E) with weights w : E → R, let G≥x = (V, {e ∈ E | w(e) ≥ x})
be the subgraph where we only preserve edges of weight x or more. Prove that for every s ∈ V, t ∈
V, x ∈ R, if s and t are connected in G≥x then they will also be connected in T≥x, where T is the
maximum spanning tree of G.

Hint: Use Kruskal’s algorithm as inspiration for the proof.
Hint: If it helps, you can assume all edges have distinct weight and only prove the claim for that case.

Solution:

As argued in class, the maximum spanning tree is obtained by running Kruskal’s algorithm that
sorts the edges by decreasing weight, hence edges of G≥x will be processed strictly before all of
G<x := G\G≥x. Furthermore, Kruskal’s algorithm only removes an edge if it would create a cycle,
which does not a�ect connectivity. Hence, any pair s, t ∈ V that was connected in G≥x will still
be connected in the maximum spanning tree using edges of weight at least x. In other words, s and
t will be connected in T≥x, as needed.

Problem: You are starting a truck company in a graph G = (V,E) with V = {1, 2, . . . , n}. Your
headquarters are in vertex 1 and your goal is to deliver the maximum amount of cargo to a destination
t ∈ V in a single trip. Due to local laws, each road e ∈ E has a maximum amount of cargo your truck
can be loaded with while traversing e. Find the maximum amount of cargo you can deliver for each
t ∈ V with an algorithm that runs in O((|V |+ |E|) log |V |) time.

Example:

1

2

10

3

8

5 410 Output:
Max cargo to 1 is ∞
Max cargo to 2 is 10

Max cargo to 3 is 8

Max cargo to 4 is 8

Explanation:
�e best path from the headquar-
ters to 4 is 1→ 2→ 3→ 4, and
the maximum cargo the truck
can carry is min(10, 8, 10) = 8.

(c) Prove that for every t ∈ V , the optimal route is to take the unique path in the maximum spanning
tree of G.

Hint: Suppose that the largest amount of cargo we can carry from 1 to t in G (i.e., the correct result)
is OPT and let ALG be the largest amount of cargo from 1 to t in the maximum spanning tree. We
need to prove two directions: OPT ≤ ALG and OPT ≥ ALG.
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Hint: One direction holds trivially as any spanning tree is a subgraph. For the other direction, use part
(b).

Solution:

Suppose that the largest amount of cargo we can carry from 1 to t in G (i.e., the correct result) is
OPT and let ALG be the largest amount of cargo from 1 to t in the maximum spanning tree.

Direction ALG ≥ OPT . By de�nition of OPT , there exists a path from 1 to t where all edges
have weight w(e) ≥ OPT . In other words, 1 and t are connected via G≥OPT . By part (b), they will
also be connected in T≥OPT , where T is the maximum spanning tree of G. Hence, there is a path
in T between 1 and t where all edges have weight w(e) ≥ OPT . We conclude that ALG ≥ OPT .

Direction ALG ≤ OPT . Since any spanning tree is a subgraph of the original graph and no
solution in a subgraph can be larger than in G, we conclude that ALG ≤ OPT .

(d) Write the pseudocode of the algorithm that computes the output for all t ∈ V and runs in O((|V |+
|E|) log |V |). You can assume that you have access to a function that computes the maximum
spanning tree from G and outputs it in any standard format. Brie�y explain why the runtime
bound holds.

Solution:

Algorithm 1

Input: graph G, given as n ≥ 1 and an adjacency list adj of (neighbor,weight) pairs.
Global variable: marked[1 . . . n], initialized to [False, False, . . . , False].

function DFS(u, capacity) . we can reach u with a truck of capacity
Print(”Max cargo to ”, u, ” is ”, capacity)
marked[u]← True
for each neighbor (v, w) ∈ adj[u] do . edge u→ v has weight w

if not marked[v] then
DFS(v,min(capacity, w))

adj ←MaximumSpanningTree(G) . We replace G with its maximum spanning tree.
DFS(1,∞)

�e runtime of maximum spanning tree is O((|V |+ |E|) log |V |) and the DFS runtime is O(|V |+
|E|). In total, we have a runtime of O((|V |+ |E|) log |V |).

Exercise 12.3 Counting Minimum Spanning Trees With Identical Edge Weights (1 point).

Let G = (V,E) be an undirected, weighted graph with weight function w.

It can be proven that, if G is connected and all its edge weights are pairwise distinct1, then its Minimum
Spanning Tree is unique. You can use this fact without proof in the rest of this exercise.

For k ≥ 0, we say that G is k-redundant if k of G’s edge weights are non-unique, e.g.

|{e ∈ E | ∃e′ ∈ E. e 6= e′ ∧ w(e) = w(e′)}| = k.

1I.e., for all e 6= e′ ∈ E, w(e) 6= w(e′).
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In particular, if G’s edge weights are all distinct, then G is 0-redundant, and if its edge weights are all
identical, it is |E|-redundant.

(a) Given a weighted graph G = (V,E) with weight function c and e = {v, w} ∈ E, we say that we
contract e when we perform the following operations:

(i) Replace v and w by a single vertex vw in V , i.e., V ′ ← V − {v, w} ∪ {vw}.

(ii) Replace any edge {v, x} or {w, x} by an edge {vw, x} in E, i.e.,

E′ ← E − {{v, x} | x ∈ V } − {{w, x} | x ∈ V } ∪ {{vw, x} | {v, x} ∈ E ∨ {w, x} ∈ E}.

(iii) Set the weight of the new edges to the weight of the original edges, taking the minimum of
the two weights if two edges are merged, i.e.

c′({x, y}) = c({x, y}) x, y /∈ {v, w}
c′({vw, x}) = c({v, x}) {v, x} ∈ E, {w, x} /∈ E

c′({vw, x}) = c({w, x}) {v, x} /∈ E, {w, x} ∈ E

c′({vw, x}) = min(c({v, x}), c({w, x})) {v, x} ∈ E, {w, x} ∈ E.

For all G = (V,E) and e ∈ E, we denote by Ge the graph obtained by contracting e in G. Explain
why if T is an MST of G and e ∈ T , then Te must be an MST of Ge.

Solution:

Assume that Te is not an MST of Ge = (Ve, Ee). �en there exists a spanning tree (Ve, T
′) of Ge

with total cost w(T ′) < w(Te). Based on T ′, we will construct a spanning tree in the original graph
G with smaller total cost.

Consider the following set of edges of the original graph G:

T ′′ = {e} ∪ {{x, y} | {x, y} ∈ T ′ ∧ x, y 6= vw}
∪ {{v, x} | {vw, x} ∈ T ′ ∧ {v, x} ∈ E ∧ ({w, x} /∈ E ∨ c({w, x}) > c({v, x})}
∪ {{w, x} | {vw, x} ∈ T ′ ∧ {w, x} ∈ E ∧ ({v, x} /∈ E ∨ c({v, x}) > c({w, x})}

Let us show that (V, T ′′) is a tree, using the following characterization: a tree is a connected graph
on n vertices with n − 1 edges. First, T ′′ has |T ′′| = |T ′| + 1 = |Ve| − 1 + 1 = |Ve| = |V | − 1
edges. Moreover, there is a path between every pair of vertices of G in T ′′. To show this, consider
x, y ∈ V . If {x, y} = {v, w}, then e is a path between x and y in T ′′. If {x, y} 6= {v, w}, let p be a
path between x and y in T ′. �ere are two cases:

• Either p does not go through vw, and it is also a path in T ′′;

• Or it contains vw, and we can replace the (at most two) edges adjacent to vw in p by their
preimage in T ′′. If the path p is transformed into two disjoint paths ending at v and w in the
process, then the edge e can be used to reconnect them in T ′′.

�erefore, (V, T ′′) is a tree. As it covers all vertices of G, (V, T ′′) is also a spanning tree of G.

Now, w(T ′′) = w(T ′) + w(e) < w(Te) + w(e) = w(T ), contradicting the minimality of T . We
conclude that Te is an MST of Ge.

(b) Let k > 0. Show that for all k-redundant G = (V,E) and e 6= e′ ∈ E with w(e) = w(e′), then Ge

is k′-redundant for some k′ ≤ k − 1.
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Solution:

Let Ve, Ee such that Ge = (Ve, Ee). Denote by we the weight function of Ge. For each a 6= b ∈ Ee

such that we(a) = we(b), we can �nd a′ 6= b′ ∈ E such that a′ and b′ are contracted to a and b
respectively, and w(a′) = w(b′). However, a′ and b′ can never be e, since e is removed from the
graph through the contraction operation. �erefore,

|{a ∈ E | ∃b ∈ Ee. a 6= b∧we(a) = we(b)}| ≤ |{a′ ∈ E | ∃b′ ∈ E. a′ 6= b′ ∧w(a′) = w(b′)}|− 1,

and Ge is k′-redundant for some k′ ≤ k − 1.

(c) Show that if G is connected and k-redundant, it has at most 2k distinct MSTs.

Hint: By induction over k, using (a) and (b).

Solution:

We prove, by induction over k ≥ 0: P (k): “Any k-redundant graph has at most 2k distinct MSTs.”

Base case. For k = 0, this is exactly the lemma from the lecture: a graph whose edge weights are
all pairwise distinct has 20 = 1 MSTs.

Induction hypothesis. Let k ≥ 0 such that P (k′) holds for all k′ ≤ k, i.e., any k′-redundant
graph has at most 2k′ distinct MSTs.

Induction step. Let G = (V,E) be a k + 1-redundant graph. Let e be an edge whose weight
w(e) is not unique among the weights of edges in E. Let us consider the sets M1 of MSTs of G
that contain e and M2 of MSTs of G that do not contain e. Clearly, the total number of MSTs of G
is |M1| + |M2|. By (a), for any MST T ∈ M1, Te is an MST of Ge. Moreover, Ge is k′-redundant
for some k′ ≤ k. Now, |M1| is at most the number of MSTs of Ge, which is at most 2k by P (k).
Every MST T ∈ M2 is also an MST of G − {e}, and therefore |M2| ≤ 2k by P (k). We get
|M1|+ |M2| ≤ 2k + 2k = 2k+1k, which proves P (k + 1).

(d) Show that for all large enough n, there exists a graph G such that G is n-redundant and has at least
2

n
2 distinct MSTs.

Hint: First assume that n = 3k for some k. Consider graphs of the following form, where all unmarked
edges have weight 0. When n = 3k + 1 or n = 3k + 2, you can add one or two edges with cost k and
k + 1 at either end.

•

•

• •

•

• •

•

• •

•

•1 2 3 . . . k − 1

Solution:

For k ≥ 0, denote by Gk the graph of the above form, with k connected triangles. �is graph has
3k+(k−1) = 4k−1 edges and redundancy 3k, since there are 3k edges with weight 0 (the triangle
edges) and all other edges have distinct weights 1..k − 1.

For any k ≥ 0, the MSTs of Gk contain all non-zero edges, while in each triangle, one can choose
independently between the following three pairs of edges:

•

•

• •

•

• •

•

•
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Hence, the 3k-redundant graph has 3k = 3
3k
3 = 2log2 3·

3k
3 distinct MSTs. Since log2 3

3 ≈ 0.53 > 1
2 ,

this is more that 2
3k
2 MSTs. �is proves the result when n = 3k.

When n = 3k + 1 or n = 3k + 2, we can add one or two additional edges at either end of Gk to
obtain an n-redundant graph, e.g., for n = 3k + 1:

•

•

• •

•

• •

•

• •

•

•1 2 3 . . . k − 1 0 •

�e graph has 2log2 3·
n−1
3 or 2log2 3·

n−2
3 MSTs, which is at least 2

n
2 as soon as log2 3 · n−23 ≥ n

2 ,
which is n( log2 33 − 1

2) ≥
2 log2 3

3 or n ≥ 2 log2 3

log2 3− 3
2

= 2
1− 3

2 log2 3

≈ 37.3. Hence, for n ≥ 38, there

exists an n-redundant graph with at least 2
n
2 distinct MSTs.
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