
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 12 December 2022
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 12 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 19 December 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 12.1 MST practice.

Consider the following graph

a

b c

d

e f

8
6

7

10

4

1

12
2

3

5

a) Compute the minimum spanning tree (MST) using Boruvka’s algorithm. For each step, provide the
set of edges that are added to the MST.

Solution:

At the �rst step we add edges {a, c}, {b, e}, {c,d}, {d, f}. At the second step we add {e, f}.

b) Provide the order in which Kruskal’s algorithm adds the edges to the MST.

Solution:

{c,d}, {d, f}, {b, e}, {e, f}, {a, c}.

c) Provide the order in which Prim’s algorithm (starting at vertex d) adds the edges to the MST.

Solution:

{c,d}, {d, f}, {e, f}, {b, e}, {a, c}.



Exercise 12.2 Maximum Spanning Trees and Trucking (2 points).

We start with a few questions about maximum spanning trees.

(a) How would you �nd the maximum spanning tree in a weighted graph G? Brie�y explain an
algorithm with runtime O((|V |+ |E|) log |V |).

Solution:

We simply take any MST algorithm (e.g., Boruvka, Prim, or Kruskal) and replace all the mins with
maxs. Speci�cally: in Boruvka, we will �nd the maximum-weight outgoing edge from each con-
nected component (“ZHK” from the lecture); in Prim, we will extract-max (instead of extract-min),
use max to update weights, and use increase-key; in Kruskal, we will sort in decreasing order. �e
correctness arguments do not change (except for replacing “minimum” with “maximum”); the same
O((|V |+ |E|) log |V |) bound holds for runtime.

(b) Given a weighted graph G = (V,E) with weights w : E → R, let G≥x = (V, {e ∈ E | w(e) ≥ x})
be the subgraph where we only preserve edges of weight x or more. Prove that for every s ∈ V, t ∈
V, x ∈ R, if s and t are connected in G≥x then they will also be connected in T≥x, where T is the
maximum spanning tree of G.

Hint: Use Kruskal’s algorithm as inspiration for the proof.
Hint: If it helps, you can assume all edges have distinct weight and only prove the claim for that case.

Solution:

As argued in class, the maximum spanning tree is obtained by running Kruskal’s algorithm that
sorts the edges by decreasing weight, hence edges of G≥x will be processed strictly before all of
G<x := G\G≥x. Furthermore, Kruskal’s algorithm only removes an edge if it would create a cycle,
which does not a�ect connectivity. Hence, any pair s, t ∈ V that was connected in G≥x will still
be connected in the maximum spanning tree using edges of weight at least x. In other words, s and
t will be connected in T≥x, as needed.

Problem: You are starting a truck company in a graph G = (V,E) with V = {1, 2, . . . , n}. Your
headquarters are in vertex 1 and your goal is to deliver the maximum amount of cargo to a destination
t ∈ V in a single trip. Due to local laws, each road e ∈ E has a maximum amount of cargo your truck
can be loaded with while traversing e. Find the maximum amount of cargo you can deliver for each
t ∈ V with an algorithm that runs in O((|V |+ |E|) log |V |) time.

Example:

1

2

10

3

8

5 410 Output:
Max cargo to 1 is ∞
Max cargo to 2 is 10

Max cargo to 3 is 8

Max cargo to 4 is 8

Explanation:
�e best path from the headquar-
ters to 4 is 1→ 2→ 3→ 4, and
the maximum cargo the truck
can carry is min(10, 8, 10) = 8.

(c) Prove that for every t ∈ V , the optimal route is to take the unique path in the maximum spanning
tree of G.

Hint: Suppose that the largest amount of cargo we can carry from 1 to t in G (i.e., the correct result)
is OPT and let ALG be the largest amount of cargo from 1 to t in the maximum spanning tree. We
need to prove two directions: OPT ≤ ALG and OPT ≥ ALG.

2



Hint: One direction holds trivially as any spanning tree is a subgraph. For the other direction, use part
(b).

Solution:

Suppose that the largest amount of cargo we can carry from 1 to t in G (i.e., the correct result) is
OPT and let ALG be the largest amount of cargo from 1 to t in the maximum spanning tree.

Direction ALG ≥ OPT . By de�nition of OPT , there exists a path from 1 to t where all edges
have weight w(e) ≥ OPT . In other words, 1 and t are connected via G≥OPT . By part (b), they will
also be connected in T≥OPT , where T is the maximum spanning tree of G. Hence, there is a path
in T between 1 and t where all edges have weight w(e) ≥ OPT . We conclude that ALG ≥ OPT .

Direction ALG ≤ OPT . Since any spanning tree is a subgraph of the original graph and no
solution in a subgraph can be larger than in G, we conclude that ALG ≤ OPT .

(d) Write the pseudocode of the algorithm that computes the output for all t ∈ V and runs in O((|V |+
|E|) log |V |). You can assume that you have access to a function that computes the maximum
spanning tree from G and outputs it in any standard format. Brie�y explain why the runtime
bound holds.

Solution:

Algorithm 1

Input: graph G, given as n ≥ 1 and an adjacency list adj of (neighbor,weight) pairs.
Global variable: marked[1 . . . n], initialized to [False, False, . . . , False].

function DFS(u, capacity) . we can reach u with a truck of capacity
Print(”Max cargo to ”, u, ” is ”, capacity)
marked[u]← True
for each neighbor (v, w) ∈ adj[u] do . edge u→ v has weight w

if not marked[v] then
DFS(v,min(capacity, w))

adj ←MaximumSpanningTree(G) . We replace G with its maximum spanning tree.
DFS(1,∞)

�e runtime of maximum spanning tree is O((|V |+ |E|) log |V |) and the DFS runtime is O(|V |+
|E|). In total, we have a runtime of O((|V |+ |E|) log |V |).

Exercise 12.3 Counting Minimum Spanning Trees With Identical Edge Weights (1 point).

Let G = (V,E) be an undirected, weighted graph with weight function w.

It can be proven that, if G is connected and all its edge weights are pairwise distinct1, then its Minimum
Spanning Tree is unique. You can use this fact without proof in the rest of this exercise.

For k ≥ 0, we say that G is k-redundant if k of G’s edge weights are non-unique, e.g.

|{e ∈ E | ∃e′ ∈ E. e 6= e′ ∧ w(e) = w(e′)}| = k.

1I.e., for all e 6= e′ ∈ E, w(e) 6= w(e′).

3



In particular, if G’s edge weights are all distinct, then G is 0-redundant, and if its edge weights are all
identical, it is |E|-redundant.

(a) Given a weighted graph G = (V,E) with weight function c and e = {v, w} ∈ E, we say that we
contract e when we perform the following operations:

(i) Replace v and w by a single vertex vw in V , i.e., V ′ ← V − {v, w} ∪ {vw}.

(ii) Replace any edge {v, x} or {w, x} by an edge {vw, x} in E, i.e.,

E′ ← E − {{v, x} | x ∈ V } − {{w, x} | x ∈ V } ∪ {{vw, x} | {v, x} ∈ E ∨ {w, x} ∈ E}.

(iii) Set the weight of the new edges to the weight of the original edges, taking the minimum of
the two weights if two edges are merged, i.e.

c′({x, y}) = c({x, y}) x, y /∈ {v, w}
c′({vw, x}) = c({v, x}) {v, x} ∈ E, {w, x} /∈ E

c′({vw, x}) = c({w, x}) {v, x} /∈ E, {w, x} ∈ E

c′({vw, x}) = min(c({v, x}), c({w, x})) {v, x} ∈ E, {w, x} ∈ E.

For all G = (V,E) and e ∈ E, we denote by Ge the graph obtained by contracting e in G. Explain
why if T is an MST of G and e ∈ T , then Te must be an MST of Ge.

Solution:

Assume that Te is not an MST of Ge = (Ve, Ee). �en there exists a spanning tree (Ve, T
′) of Ge

with total cost w(T ′) < w(Te). Based on T ′, we will construct a spanning tree in the original graph
G with smaller total cost.

Consider the following set of edges of the original graph G:

T ′′ = {e} ∪ {{x, y} | {x, y} ∈ T ′ ∧ x, y 6= vw}
∪ {{v, x} | {vw, x} ∈ T ′ ∧ {v, x} ∈ E ∧ ({w, x} /∈ E ∨ c({w, x}) > c({v, x})}
∪ {{w, x} | {vw, x} ∈ T ′ ∧ {w, x} ∈ E ∧ ({v, x} /∈ E ∨ c({v, x}) > c({w, x})}

Let us show that (V, T ′′) is a tree, using the following characterization: a tree is a connected graph
on n vertices with n − 1 edges. First, T ′′ has |T ′′| = |T ′| + 1 = |Ve| − 1 + 1 = |Ve| = |V | − 1
edges. Moreover, there is a path between every pair of vertices of G in T ′′. To show this, consider
x, y ∈ V . If {x, y} = {v, w}, then e is a path between x and y in T ′′. If {x, y} 6= {v, w}, let p be a
path between x and y in T ′. �ere are two cases:

• Either p does not go through vw, and it is also a path in T ′′;

• Or it contains vw, and we can replace the (at most two) edges adjacent to vw in p by their
preimage in T ′′. If the path p is transformed into two disjoint paths ending at v and w in the
process, then the edge e can be used to reconnect them in T ′′.

�erefore, (V, T ′′) is a tree. As it covers all vertices of G, (V, T ′′) is also a spanning tree of G.

Now, w(T ′′) = w(T ′) + w(e) < w(Te) + w(e) = w(T ), contradicting the minimality of T . We
conclude that Te is an MST of Ge.

(b) Let k > 0. Show that for all k-redundant G = (V,E) and e 6= e′ ∈ E with w(e) = w(e′), then Ge

is k′-redundant for some k′ ≤ k − 1.

4



Solution:

Let Ve, Ee such that Ge = (Ve, Ee). Denote by we the weight function of Ge. For each a 6= b ∈ Ee

such that we(a) = we(b), we can �nd a′ 6= b′ ∈ E such that a′ and b′ are contracted to a and b
respectively, and w(a′) = w(b′). However, a′ and b′ can never be e, since e is removed from the
graph through the contraction operation. �erefore,

|{a ∈ E | ∃b ∈ Ee. a 6= b∧we(a) = we(b)}| ≤ |{a′ ∈ E | ∃b′ ∈ E. a′ 6= b′ ∧w(a′) = w(b′)}|− 1,

and Ge is k′-redundant for some k′ ≤ k − 1.

(c) Show that if G is connected and k-redundant, it has at most 2k distinct MSTs.

Hint: By induction over k, using (a) and (b).

Solution:

We prove, by induction over k ≥ 0: P (k): “Any k-redundant graph has at most 2k distinct MSTs.”

Base case. For k = 0, this is exactly the lemma from the lecture: a graph whose edge weights are
all pairwise distinct has 20 = 1 MSTs.

Induction hypothesis. Let k ≥ 0 such that P (k′) holds for all k′ ≤ k, i.e., any k′-redundant
graph has at most 2k′ distinct MSTs.

Induction step. Let G = (V,E) be a k + 1-redundant graph. Let e be an edge whose weight
w(e) is not unique among the weights of edges in E. Let us consider the sets M1 of MSTs of G
that contain e and M2 of MSTs of G that do not contain e. Clearly, the total number of MSTs of G
is |M1| + |M2|. By (a), for any MST T ∈ M1, Te is an MST of Ge. Moreover, Ge is k′-redundant
for some k′ ≤ k. Now, |M1| is at most the number of MSTs of Ge, which is at most 2k by P (k).
Every MST T ∈ M2 is also an MST of G − {e}, and therefore |M2| ≤ 2k by P (k). We get
|M1|+ |M2| ≤ 2k + 2k = 2k+1k, which proves P (k + 1).

(d) Show that for all large enough n, there exists a graph G such that G is n-redundant and has at least
2

n
2 distinct MSTs.

Hint: First assume that n = 3k for some k. Consider graphs of the following form, where all unmarked
edges have weight 0. When n = 3k + 1 or n = 3k + 2, you can add one or two edges with cost k and
k + 1 at either end.

•

•

• •

•

• •

•

• •

•

•1 2 3 . . . k − 1

Solution:

For k ≥ 0, denote by Gk the graph of the above form, with k connected triangles. �is graph has
3k+(k−1) = 4k−1 edges and redundancy 3k, since there are 3k edges with weight 0 (the triangle
edges) and all other edges have distinct weights 1..k − 1.

For any k ≥ 0, the MSTs of Gk contain all non-zero edges, while in each triangle, one can choose
independently between the following three pairs of edges:

•

•

• •

•

• •

•

•

5



Hence, the 3k-redundant graph has 3k = 3
3k
3 = 2log2 3·

3k
3 distinct MSTs. Since log2 3

3 ≈ 0.53 > 1
2 ,

this is more that 2
3k
2 MSTs. �is proves the result when n = 3k.

When n = 3k + 1 or n = 3k + 2, we can add one or two additional edges at either end of Gk to
obtain an n-redundant graph, e.g., for n = 3k + 1:

•

•

• •

•

• •

•

• •

•

•1 2 3 . . . k − 1 0 •

�e graph has 2log2 3·
n−1
3 or 2log2 3·

n−2
3 MSTs, which is at least 2

n
2 as soon as log2 3 · n−23 ≥ n

2 ,
which is n( log2 33 − 1

2) ≥
2 log2 3

3 or n ≥ 2 log2 3

log2 3− 3
2

= 2
1− 3

2 log2 3

≈ 37.3. Hence, for n ≥ 38, there

exists an n-redundant graph with at least 2
n
2 distinct MSTs.

6


